How AstraZeneca’s Using OEE to Increase Packaging Uptime at Westborough

June 18, 2007
Maximizing plant uptime is important, but many drug manufacturing professionals still don't view it as a "do or die" issue.  A useful article recently appeared in Healthcare Packaging, in which Jeff Rosen, Senior Industrial Engineer for AstraZeneca's aseptic manufacturing, described how the company's Westborough facility is using OEE and a new data collection system to increase uptime. We'd looked at the facility's operations a few years back. Below, an excerpt from the Healthcare Packaging article: "...Rosen explains, "When we go after uptime improvements, we look at percent uptime over a period of a shift, a week, or a month, examining minor stops in minutes. We look at speed of the line and we also look at equipment stop downtime analysis. We develop a chart showing our one biggest downtime category and usually target that area for improvement. But we have to understand that determining the biggest downtime category doesn't give us the whole picture. We need a more complete analysis. The way we do that is to focus on the reliability losses during the run cycle. When a line goes down for 10 minutes or longer, we call it a breakdown. If a line is down for less than 10 minutes, then perhaps an operator is clearing up a jam. Those are minor, short stops. We need to determine if we're running at a designed rate or at our maximum demonstrated production rate. Are we running at that rate whenever we are running? And are uptime losses due to the affect of upstream or downstream equipment? Typically we have more than one machine on a line, with several machines in a series, so we need to know the interaction between those machines. And what is the interaction between the faults that can occur just within one system or one machine? That gives us the full picture if you look at all these metrics. We do this because increased reliability results in less wear and tear on people and equipment... A measurement system should be able to analyze data, identify improvement targets, and indicate if implemented improvement actions are working well. Some metrics are not analyzed in a format that makes them actionable. Actionable metrics are those that indicate the source of loss areas that with improvement will directly increase uptime or mean time between failures. By drilling down through the OEE performance metric we can gain visibility to the reliability-related output loss areas that may offer the biggest bang for the buck. For example, we know what the OEE of the production line is. We know that the three components of OEE are availability, performance, and quality. In this case study, we're going to break performance down and look at the internal machine faults. We need to have that visibility of the internal machine faults, the minor stops, the rate loss, and also PLC signals that could tell us the conditions that may eventually cause a minor stop..." -AMS
Maximizing plant uptime is important, but many drug manufacturing professionals still don't view it as a "do or die" issue.  A useful article recently appeared in Healthcare Packaging, in which Jeff Rosen, Senior Industrial Engineer for AstraZeneca's aseptic manufacturing, described how the company's Westborough facility is using OEE and a new data collection system to increase uptime. We'd looked at the facility's operations a few years back. Below, an excerpt from the Healthcare Packaging article: "...Rosen explains, "When we go after uptime improvements, we look at percent uptime over a period of a shift, a week, or a month, examining minor stops in minutes. We look at speed of the line and we also look at equipment stop downtime analysis. We develop a chart showing our one biggest downtime category and usually target that area for improvement.But we have to understand that determining the biggest downtime category doesn't give us the whole picture. We need a more complete analysis. The way we do that is to focus on the reliability losses during the run cycle. When a line goes down for 10 minutes or longer, we call it a breakdown. If a line is down for less than 10 minutes, then perhaps an operator is clearing up a jam. Those are minor, short stops.We need to determine if we're running at a designed rate or at our maximum demonstrated production rate. Are we running at that rate whenever we are running? And are uptime losses due to the affect of upstream or downstream equipment? Typically we have more than one machine on a line, with several machines in a series, so we need to know the interaction between those machines. And what is the interaction between the faults that can occur just within one system or one machine? That gives us the full picture if you look at all these metrics. We do this because increased reliability results in less wear and tear on people and equipment...A measurement system should be able to analyze data, identify improvement targets, and indicate if implemented improvement actions are working well. Some metrics are not analyzed in a format that makes them actionable. Actionable metrics are those that indicate the source of loss areas that with improvement will directly increase uptime or mean time between failures. By drilling down through the OEE performance metric we can gain visibility to the reliability-related output loss areas that may offer the biggest bang for the buck.For example, we know what the OEE of the production line is. We know that the three components of OEE are availability, performance, and quality. In this case study, we're going to break performance down and look at the internal machine faults. We need to have that visibility of the internal machine faults, the minor stops, the rate loss, and also PLC signals that could tell us the conditions that may eventually cause a minor stop..."-AMS
About the Author

pharmamanufacturing | pharmamanufacturing