The Future of Quality Control

Digital and automation technologies have created opportunities for change in pharma QC laboratories

By Matthias Ringel, Vanya Telpis, Evgeniya Makarova, and Yan Han, McKinsey & Company

1 of 3 < 1 | 2 | 3 View on one page

The emerging technologies that characterize Industry 4.0 — from connectivity to advanced analytics, robotics and automation — have the potential to revolutionize every element of pharma manufacturing labs within the next five to 10 years. The first real-life use cases have delivered 30-40 percent increases in productivity within already mature and efficient lab environments, and a full range of improvements could lead to over 50 percent reductions in overall quality control costs.

Digitization and automation will also ensure better quality and compliance by reducing manual errors and variability, as well as allowing faster and effective resolution of problems. Use cases have demonstrated a more than 65 percent reduction in deviations and over 90 percent faster closure times. Prevention of major compliance issues can in itself be worth millions in cost savings. Furthermore, improved agility and shorter testing time can reduce QC lab lead times and eventually lead to real-time releases.

While most of the advanced technologies already exist today, few pharmaceutical companies have yet to see any significant benefits. On one side, quality leaders struggle to define a clear business case for the technological changes, and thus fail to bring to management attention to the significant impact potential associated with lab digitization or automation. On the other side, companies often neglect the development of a clear long-term lab evolution strategy and blueprint, which can lead to some costly investments with unclear benefits. For example, many companies have already taken steps to become paperless by first simplifying paper records to minimize the number of entries and then digitizing lab testing records. Now those moves are being superseded by new advances in equipment connectivity that enable direct transcription of thousands of data points without manual data transcription and without any reviews.

mckinsey future of pharma labs

To capture opportunities offered by existing and emerging technological advances, companies should set clear goals, define robust business cases for any level of investment, and engage in rapid piloting of the new technologies followed by fast scale-up of pilots that deliver promising results. To succeed in the future, pharma companies need both the foresight to make long-term strategic investments, including those in R&D for developing and filing new test methods, and the agility to adapt those plans as technologies rapidly evolve.

THREE HORIZONS OF LAB EVOLUTION
Multiple digital and automation technologies have created opportunities for change in pharmaceutical laboratories. Most pharma labs have not yet achieved digital transformation, but labs can aim for one of the three future horizons of technological evolution (see Exhibit 1).

1.Digitally enabled labs achieve at least 80 percent paperless operations. These labs transition from manual data transcription and second person verification to automatic data transcription between equipment and general laboratory information management systems (GLIMS).

Digitally enabled labs use advanced real-time data analytics and ongoing process verification to track trends, prevent deviations or out-of-specifications, and optimize scheduling. They employ digital tools like smart-glasses to translate standard operating procedures (SOPs) into step-by-step visual guidance on how to execute a process. They create a digital twin of a lab to predict impacts before making physical changes. All of these are currently available technologies, with time-to-impact as short as three months for each case.

An average chemical QC lab can reduce costs by 25-45 percent by reaching the digitally enabled labs horizon. Potential savings at an average microbiology lab would be in the 15-35 percent range. Productivity improvements come from two main sources:

• Elimination of up to 80 percent of manual documentation work, and
• 
Automation and especially optimization of planning and scheduling to improve personnel, equipment and materials utilization.

With fewer manual errors and data-enabled analyses of root causes, labs can greatly reduce investigation workloads. The digitally enabled labs also reap compliance improvement benefits from reduced errors and variability, as well as seamless data retrieval and analysis. The increased productivity and scheduling agility can also reduce lab lead time by 10 to 20 percent.

One large global pharma company transitioned to a digitally enabled lab within its Italian digital lighthouse plant. Lab productivity at the site jumped by more than 30 percent after the company implemented advanced schedule optimization by harnessing a modular and scalable digital twin platform adapted to the lab specific scheduling constraints. The site also used advanced analytics to reduce deviations by 80 percent, eliminating reoccurring deviations altogether and accelerating deviation closure by 90 percent.

Pharma companies have many options when it comes to choosing and customizing technological solutions to create digitally enabled labs. In addition to custom digital twin and advanced analytics platforms, other solutions include real-time insights from IoT platforms, lab scheduling software, and digital assistants with visual operating procedures.

2. Automated labs use robots, cobots or more specific advanced automation technologies to perform all repeatable task, such as sample delivery and preparation. At the automated labs stage, some high-volume testing (e.g., microbial detection and water-for-sterility) is performed on-line instead of in physical labs. Automated labs can also use predictive maintenance technologies to plan for infrequent tasks like large equipment maintenance that can be performed by lab analysts with remote expert support.

1 of 3 < 1 | 2 | 3 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments