Genentech's DAWN Patrols Critical Assets Across Campus

Biotech giant’s Data Acquisition Wireless Network provides unprecedented infrastructure transparency for transient lab equipment

By Aaron Lee, DAQ Product Manager, Yokogawa

1 of 2 < 1 | 2 View on one page

As wireless technologies expand farther into industrial automation and process manufacturing, organizations across the world are adopting and implementing wireless solutions to provide unique identifiers, along with the ability to transfer data over a network without requiring human-to-human or human-to-machine interaction. 

As the heart of its U.S. R&D center of excellence, San Francisco is a special place for biotech giant Genentech. Employing about 10,000 people, Genentech’s campus occupies a large area, encompassing 60 buildings within a two-mile radius. To support overall operational excellence, the site contains a dedicated facility-monitoring system that allows equipment owners to view live process values and monitor equipment for performance and alarm conditions via a common, accessible and unified system. Data collected by the system is also sent to a historian to preserve data generated by the many assets across campus.

Using this capability, Genentech’s operators monitor the condition of critical assets around the clock, ready to contact individual equipment owners if and when an alarm condition occurs.


MOBILE ASSETS, WIRED INFRASTRUCTURE
As business requirements evolve at Genentech, critical portable lab equipment migrates from one building to another, causing discontinuity and generating the additional paperwork required for the myriad assets that require tracking. Trying to accommodate asset mobility while serving the business and regulatory imperatives associated with centrally monitoring and managing data with a wired infrastructure would be difficult at best. Traditionally, Genentech would decide to shift equipment into a building or lab without an existing facility-monitoring infrastructure. This caused delays because the labs needed to be retrofitted with a new data logger and associated wiring. Cost and delays during equipment migration could add up quickly depending on the condition of the building or lab.  

According to Vikas Bakshi, Genentech’s monitoring system owner for equipment similar to this, the advantages offered by the wireless technology were multifold. “Significant cost savings realized during the initial implementation due to additional channel capacity were extended by reduced resource requirements for data administration during normal equipment moves,” he said.

While there are thousands of critical assets across the site, ultra-low freezers are one of the most common equipment types. Many ultra-low freezers contain aging compressors that can potentially fail at any time. Monitoring the health of these compressors proved to be challenging due to the limited amount of I/O allowed on existing wired infrastructure. As discussed earlier, freezers often migrate from one location to another, so adding additional wiring to monitor the health of compressors helped drive costs higher during equipment migration and implementation. Monitoring specific equipment for compressor status and similar functional conditions like door open/close status was also needed to provide additional data to support predictive maintenance and reliability regimes and identify at-risk equipment prior to failure.


A NEW DAWN
Yokogawa and Genentech partnered to develop DAWN (Data Acquisition Wireless Network). It operates on the 900 MHz frequency band and employs a frequency hopping, self-healing and self-organizing mesh network. This mesh networking strategy allows the radio signals from the equipment to find the closest and most efficient route back to the gateway during migration without any reprogramming or reconfiguration (see sidebar below). In addition, mesh networking allows full network redundancy. If an infrastructure repeater goes down, the individual radios automatically connect to the next closest repeater within range.

Genentech’s DAWN delivers temperature, compressor condition and alarm status readings from each ultra-low freezer. The radio provides secure, reliable 128-bit encrypted wireless communication. Without additional hardware, each radio has the ability to act as a gateway, access point/repeater, and I/O device based on its configuration. The radio includes eight discrete I/O, four analog I/O and one Type T thermocouple module input. The system supports the Modbus TCP communication protocol.  

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments