By Paul Thomas, Managing Editor
Plenty of drug makers today are thinking small. Real small. In the neverending pursuit of a better route to certain intermediates and active pharmaceutical ingredients (APIs) and more streamlined operations, drug companies are turning to microreactor technology.
Microreactors are essentially small flow channels, or systems of channels, where reactions may occur. Myriad other microchannel devices exist to handle additional unit operations. The concept behind them is not new, but these devices are now cheaper and easier to come by, and many firms are jumping on the micro-bandwagon. They are looking to perform common pharmaceutical reactions—hydrogenations, oxidations, substitutions, even Wittig and Passerini reactions—in miniaturized continuous flow.
Microreactors have several distinct advantages. Due in large part to their high surface-to-volume ratios and small channel dimensions, they are highly efficient for mixing, mass transfer, and heat transfer. These factors can lead to greater selectivity and higher yields. It also makes them attractive for highly exothermic reactions or those involving hazardous materials that would normally generate large amounts of unwanted by-products. And they are fast. The channel dimensions result in rapid diffusive mixing at the molecular scale (no need for stirring) while operations can be scaled up (by running many microreactors in parallel) to make them viable for large-scale manufacturing.
For all of these reasons, microreactors and microprocessing equipment have garnered interest from proponents of broader industry trends such as lean manufacturing, high-throughput technologies (HTT), and personalized medicines. And, not surprisingly, they have been embraced by those who think the industry is too batch-dependent. In fact, microreactors can perform reactions and get results often not possible in batch reactors.
A brief example: Researchers at the New Jersey Center for MicroChemical Systems (NJCMCS) at the Stevens Institute of Technology (Hoboken, N.J.) have illustrated the benefits of microreactions by comparing a standard catalytic hydrogenation using a 100-liter batch reactor versus the same reaction in a continuous flow microreactor. They found that the microreactor outperformed batch in terms of safety — less H2 at lower pressures — heat extraction, and selectivity. While the batch cycle was several hours, the residence time of the microreactor was a matter of minutes. The researchers did identify challenges to consider in using microreactors — how to mix most effectively, handle pressure, and optimize yield — that indicate they are still coming to grips with the nuances of the technology.
Drug Companies on Alert
Drug companies are playing it close to the vest about the extent of their interest in, and use of, microreactors. What is certain is that the technology has proven itself and is making the transition from R&D and pilot projects to full-scale commercial processing.
“If any of the major pharma companies is not doing something with microreaction technology, then they are following it very closely so that they can jump in when the time is right,” says Ronald Besser of the NJCMCS. The Center is working with several pharmaceutical companies, including Bristol-Myers Squibb (New York, N.Y.), to develop commercial applications using microreactors.
Several other industry heavyweights have announced strong commitments to microreactor and microchannel technology in the past few months.
- In October, Bayer Technology Services (BTS; Leverkusen, Germany) announced a buyout of Ehrfeld Mikrotechnik (Wendelsheim, Germany), the start-up manufacturing firm of microreactor guru Wolfgang Ehrfeld.
- In September, Boehringer Ingelheim (Ingelheim, Germany) purchased another manufacturer, STEAG microParts, from STEAG AG (Essen, Germany).
- And in August, Clariant Pharmaceuticals, Inc. (Muttenz, Switzerland) established the Clariant Competence Centre for Microreactor Technology at its Frankfurt location to further develop the technology — for niche applications at first, though a company spokesperson estimates that eventually 15 to 20 percent of all synthetic processes at the plant could be done by microreactors.
The AFRICA microreactor by Syrris, Inc. illustrates the modular system concept for drug discovery and development. Courtesy of Syrris, Inc.
The tendency to clog, in fact, seems to be the one consistent knock against microreactors. Manufacturers are working on solutions. Syrris’s Gray, for example, notes that the company’s AFRICA system is designed to detect the presence of precipitates before blockage occurs. Yet the sheer dynamics of performing reactions on the micro scale will give rise to problems not encountered on a large scale. They can be difficult to clean, for instance, and may be unable to work with many gases or insoluble reagents. As the systems are numbered up, reaction behavior can change and control becomes more difficult.J&J's Zhang suggests another limitation. “The reaction has to be relatively fast,” she notes. “If it doesn’t complete within a half-hour or so, it becomes less practical. The throughput is so low that you can only make small amounts of product.”Nevertheless, Zhang is excited by the potential of microreactors. “As we have moved from an evaluation phase of the technology to some successful applications in some real-life situations, interest in the microreactor technology is increasing in the other parts of our development organization,” she says.Even if the bugs and limitations are addressed, microreactors will need some time to really catch on. “It will be five to 10 years before I see them being more potentially mainstream,” says Payne. One reason, he says, is that the technology has not matured yet for its optimal applications.“The barrier in the laboratory to acceptance is fairly low,” says Dr. Anton Nagy, head of Integrated Lab Solutions, a turnkey engineering consulting firm in Berlin. “If you tell guys in the processing plant, ‘This will blow your batch reactor away,’ you get a lot of resistance. They love their batch reactors.”Moreover, Nagy says, it is nearly impossible to simply exchange a batch reactor with a microreactor without having to completely retrofit the feed section and downstream processing operations. “The cost implications and down-time required to do this are substantial and this often impedes implementation,” he says.Nagy says the microreactor community shares the blame for the slow acceptance, because it has been too ambitious at times, always thinking small. “They always thought that smaller was sexier,” he says. Rather, Nagy believes microreactors should be made “as small as possible, but as big as necessary.” As an example, he says that there are many instances in which a microreactor is advantageous, but in which miniaturized pumps, pressure transducers, and mass flow controllers and other peripheral components provide no additional benefit but add substantially to implementation costs.CPC, Inc. figures to be a bellwether firm, in its role as equipment vendor and contract manufacturer (through Synthacon). CEO Schwalbe, who recently moved the company’s headquarters to Cambridge, Mass., to take advantage of research synergies in the Boston area, is betting the timing is right for widespread acceptance of microreaction technology. “The market has just passed the point where the technology’s early adapters have finally confirmed that it is highly worthwhile,” he says.Micro Managing Dr. Anton Nagy, head of the engineering consulting firm Integrated Lab Solutions (Berlin), offers up some suggestions for companies looking to get their feet wet in microreactor technology.
|
MAJOR PLAYERS IN MICRO The following firms are some, certainly not all, of those pioneering microreactor technology and microfluidics: CPC, Inc. (Cambridge, Mass.), www.cpc-net.com — CPC’s CYTOS Lab System and other offerings have had proven successes in multi-step operations. Ehrfeld Mikrotechnik BTS (Wendelsheim, Germany), www.ehrfeld.com — The start-up by Dr. Wolfgang Ehrfeld, recently purchased by Bayer Technology Services. The company currently offers a variety of products from various manufacturers. Epigem Limited, Inc. (Redcar, U.K.), www.epigem.com — Produces microfluidic chips and the Fluence microfluidic system, a “starter pack” for experimentation in microreaction and analysis. FZK (Forschungszentrum Karlsruhe; Karlsruhe, Germany), www.fzk.de — The manufacturing arm of a research center producing, among other things, microchannel devices and ceramic microreactors. IMM (Institute for Mikrotechnik Mainz; Mainz, Germany), www.imm-mainz.de — A groundbreaking research institute which produces microreactors and many other miniaturized devices. MicroChemical Systems Ltd. (Hull, U.K.), www.microchemicalsystems.co.uk — Started by microchemical pioneer Dr. Stephen Haswell. Offers a variety of microfluidics products and services for high-throughput chemistry and screening. Mikroglas Chemtech GmbH (Mainz, Germany), www.mikroglas.de — Specializes in glass and other microreactors, micromixers, and heat exchangers. Syrris, Inc. (Herts, U.K.), www.syrris.com — Its AFRICA modular systems can be tailored to any number of manufacturing needs. Velocys, Inc. (Plain City, Ohio), www.velocys.com — Customizes a variety of microreactors and devices for industry. Just beginning to focus on pharmaceuticals. |
Editor's Note: To access the infographics that accompany this article, please click the "Download Now" button below.